

Jamie.Shiers@cern.ch

ALEPH

Contact Information: Greybook Public Page: http://aleph.web.cern.ch/aleph/Public.html Internal Page: http://aleph.web.cern.ch/aleph/

Eastch this site	Contra
------------------	--------

EXTERNAL RESOURCES Open Data Portal A library of openly accesible physics data from CERN. HEPData @ An open-access repository for scattering data from experimental particle physics. DPHEP Study Group & A common reflection on data persistency and long term analysis in High Energy Physics.

ALEPH is a particle physics experiment installed at LEP, the large electronpositron collider at the CERN laboratory in Geneva/Switzerland. LEP produced its first collisions in July 1989 and since then, millions of events have been

International Collaboration for Data Preservation and Long Term Analysis in High Energy Physics

Data Preservation for Re-Use

From Tens of TB to Tens of EB ... for (several) Tens of Years

Overview

- This talk will (loosely) follow the H2020 Guidelines for DMPs
- These are complemented by some additional requirements from other FAs (NSF, DoE, ...)
- And most importantly by some of our own
 - 1. A <u>Common Way</u> of presenting DP Status across the main HEP labs & experiments worldwide
 - 2. <u>Common Metrics</u> (LHC) to ensure that the data can be shared, re-used and (some) analyses reproduced
- N.B. HEP data are measurements not observations and are only recorded after very de-selective triggers

Some Specific Questions...

- How do we scale data preservation and data access to address petabyte volumes of data & allow access by users across the world?
- How can we preserve material data infrastructures: storage media, software, and the machines to run it?
- What are the challenges in data description and curation, and how are different academic disciplines managing this change?

What is Data?

- H2020 talks about data / datasets
 - We (DPHEP) talk about data, software¹ and documentation²
 - 1. Including also the environment in which to run it
 - 2. Sometimes extended to "knowledge" (later)
- These are the 3 pillars of our DP strategy: distinct services run by different teams
- (Very) loosely coupled (which I think is right)

Documentation – CERNLIB example

CERN Engran Library Long Weikago V2

tatistical Analysis and Histogramming

Reference Manual

constan Technology Datas

CIEN Group Salteries

- Short & Long writeups last revised in 1995
 - CERNLIB itself dates back to ~1964 1995
- Postscript and HTML (not consistent) still exist but no longer accessible through Web
- Re-formatted in 2015 to consistent PDF/A & HTML, stored in Digital Library (CERN Document Server – Invenio-based)
- Lifetime of repository: ~decades + forward migration (not always transparent or complete)
- Together with code & references to papers: probably good for several / many decades (longer than the code itself can be compiled...)
- LEP offline documentation also being reformatted and captured
- For LHC, documentation <u>constantly used</u> to train new collaboration members and for exploitation of Open Data releases

(Big) Data (Today – Peanuts Tomorrow)

D	PHEP Data Preservation Status	H2020 DMP Guidelines (Annex 1)				
•	Bit Preservation Data (volume, storage strategy including eplication etc.) Documentation Software Use Cases Farget Communities	Data set reference and name Data set description Standards and Metadata Data Sharing Archiving and Preservation (including storage and backup)				
•	Value	H2020 Annex 2				
•	niqueness esources (how funded – sustainability) tatus sues utlook	 Discoverable Accessible Assessable and intelligible Useable beyond the original purpose Interoperable to specific quality standards 				

New IBM drives and media: Just In Time for LEP!

The last **200 MB** tape – now **~10 TB** in the same form factor

 Tape reliability took a big jump forward with the selfenclosed and lightweight IBM 3480 type of cartridge. There were still many drive builders (now just Oracle and IBM) and media suppliers (now just 1...)

Peta- to Exa-byte Storage

- Multiple copies worldwide distributed and processed via WLCG
- Primary copy is on tape with active data cached to disk
- Regular scrubbing of volumes, migration to new media every ~3-5 years
- Cost per unit time goes down with time reliability goes up
 - But not the integrated cost...
- Tapes still have a future (~2030) beyond that hard to tell
- WLCG "cost model" widely shared e.g. through EU 4C project
- How (when) will this evolve to Cloud Storage?

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it** 10

Case B) increasing archive growth

Start with 10PB, then +50PB/year, then +50% every 3y (or +15% / year)

CERM

Department

CERN IT Department CH-1211 Genève 23 Switzerland **www.cern.ch/it** 11

Case B) increasing archive growth

LEP Era Data (aka "peanuts")

- A <u>full copy</u> of the data from the 4 LEP experiments is now on disk (EOS) at CERN
- Plus <u>2 further copies</u> on tape at CERN
 - And multiple copies at outside institutes
 - ALEPH: originally a physical machine per collaborating institute – later a VM
- Will LHC data also be "peanuts" one day?
 (The "bits" are not the difficult bit...)

Some Specific Questions...

- How do we scale data preservation and data access to address petabyte volumes of data & allow access by users across the world?
- How can we preserve material data infrastructures: storage media, <u>software</u>, and the machines to run it?
- What are the challenges in data description and curation, and how are different academic disciplines managing this change?

"Software Preservation"

CernVM (-FS) (caveat emptor)

- Main ingredients
 - CernVM-FS embedded versioning (time machine)
 - Well defined and versioned recipes to regenerate VMs
- Being actively used for past & present experiments also for "open data releases"
- Complementary to not a replacement of forward porting and validation (the latter always required)
- Big progress in recent years similar approaches also in other disciplines

Demonstrators for

Software Environment Preservation

- ALEPH
 - Software was last validated on Scientific Linux 4
 - Dedicated VM and containers
- CMS Open Data Pilot
 - Released data were taken in 2011
 - Requires Scientific Linux 5 from same period
- CernVM 3 is an enabling technology for the Open Data Project
 - <u>http://opendata.cern.ch</u>

ALEPH: regenerating SLC4

nstances	Filter		٩	Filter + Laun	ch Instance	Soft	Reboot Insta	nces (i	Terminate Instances
Instance Name	Image Name	IP Address	Size	Keypair Status Taak State Uptime Actions				Actions	
cernvm- aleph01	ucernvm-slo4	188.184.134.26	m1.smal 2GB RAJ 1 VCPU 20.0GB Disk	N M -	Active	None	Running	3 months, 2 weeks	Create Braganot More *
ernvm	-alep		laleph@ce [aleph@ce **** **** ****	ernvm-a ernvm-a ekkkke ekkke ekkke ekkke ekkee	alep alep **** *	0h01 ~ 0h01 A 0 ***** 0 *****]\$ cd LPHA] ***** ALPHA *****	l test/ALPHA/ \$ sh alpha.sh ************************************	

JBlomer, GGanis - CernVM(FS) for DPHER

3/2/16

2020 Vision for LT DP in HEP

- <u>Long-term e.g. FCC timescales</u>: disruptive change
 - By 2020, all archived data e.g. that described in DPHEP Blueprint, including LHC data – easily findable, fully usable by designated communities with clear (Open) access policies and possibilities to annotate further
 - Best practices, tools and services well run-in, fully documented and sustainable; built in common with **other disciplines**, based on standards
 - **DPHEP portal**, through which data / tools accessed
 - > "HEP FAIRport": Findable, Accessible, Interoperable, Re-usable
- Agree with Funding Agencies clear targets & metrics (via DMPs?)

Portals & Websites

Official Database of CERN Experiments	"The Grey Book" – Experiments, Institutes and Scientists
DPHEP Portal	Access to Data Preservation Status of HEP institutes worldwide (and, where applicable, other portals)
CERN Open Data Portal	Release (eventually large) subsets (copies) of the data with documentation, software and environment to run it. Access (release) policies of the expts
CERN Analysis Portal	(Currently only within .cern.ch) Detailed Use Cases (= knowledge capture?)
HEPData	Repository of data from publications

A Look Ahead... ("open science")

- Following a pilot, <u>half-day event</u> in Nov 2015, we foresee a larger, multi-disciplinary workshop in ~April 2017
- Target 200 250 people, focussing on practical experience of data sharing, re-use, reproducibility of results, linking publications to data (and other objects with DOIs) etc.

Programme committee & dates ~ April 2016

Summary

- We believe we have "bit preservation" under control technically and financially – with a ~2+ decade outlook
- Good solutions exist for documentation but there are often tensions between short-term needs (aka Wikis) and LTDP (also ~2+ decade outlook)
- Virtualisation looks increasingly promising but probably can't protect against "disruptive change"
 - e.g. proprietary O/S + h/w to commodity + Linux
 - Possibly ~1 decade retrospective + 1 prospective
- "The Proof of the Pudding" test, validate, repeat constantly (and Collaborate!)

CMS Open Data release

- Data
 - CMS collision data in format used in analysis by CMS physicists (AOD)
 - For the next release, a partial set of simulated MC included (for the first release no corresponding MC available)
 - For future releases, include "miniAOD" (less complete, but more compact and cleaner)
- Tools
 - VM image of the computing environment
 - Access to the corresponding software and condition data
 - Access to data through xrootd or direct download
- Instructions
 - ▶ Basic instructions to get started (≈ 15 mins to setup)
 - Basic description of the physics objects
- Examples of derived datasets to be used in different education and outreach contexts
 - Event display, online histogramming
 - Code to produce the derived datasets

CERN

In In

200

Examples of open data usage

- Ongoing analysis at MIT on jet substructure
 - a small group with a theorist, a post-doc and undergraduate
 - got started with the instructions on portal, and got help on volunteering basis from MIT and US CMS colleagues
 - aiming for a publication
 - willing to contribute to the documentation to help other users
- Research into cloud computing security
 - testing data deletions and operations by the local file system
 - the nature of the data itself is not relevant, but LHC data ideal.
- Pilot project on teaching applicatios for high-schools
 - ideas from physics teachers on further education course at CERN
 - based on the existing tools online tools (event display...)
- External resources have been generated
 - IFCA provides computing resources https://cmsopendata.ifca.es/

200

Use Cases – "all HEP"

- 1. Bit preservation basically OK (at CERN) but not a formal policy
 - On the path to Certification of WLCG "digital repositories" (Tier0/Tier1)
- 2. Preserve data, software, and know-how in the collaborations (see CAP Use Cases backup)
 - Foundation for long-term DP strategy
 - Analysis reproducibility: Data preservation alongside software evolution
- 3. Share data and associated software with (wider) scientific community
 - Additional requirements:
 - Storage, distributed computing
 - Accessibility issues, intellectual property
 - Formalising and simplifying data format and analysis procedure
 - Documentation
- Open access to reduced data set to general public
 - Education and outreach
 - Continuous effort to provide meaningful examples and demonstrations
- Strategy and scope in policy documents for LHC collaborations
 - <u>http://opendata.cern.ch/collection/data-policies</u>

III Information Technology Department

CAP Use Cases (I) (=know-how?)

- 1. The person having done (part of) an analysis is leaving the collaboration and has to hand over the know-how to other collaboration members.
- 2. A newcomer would like join a group working on some physics subject
- 3. In a large collaboration, it may occur that two (groups of) people work independently on the same subject
- 4. There is a conflict between results of two collaborations on the same subject

CAP Use Cases (II)

- 5. A previous analysis has to be repeated
- 6. Data from several experiments, on the same physics subject, have to be statistically combined
- 7. A working group or management member within a collaboration wishes to know who else has worked on a particular dataset, software piece or MC
- 8. Presentation or publication is submitted for internal/collaboration review and approval: lack of comprehensive metadata
- 9. Preparing for Open Data Sharing

