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Motivation & approach



Motivation

• Alzheimer’s disease (AD) is the most common cause of dementia
• Age correlates strongly with disease
• Prevalence expected to increase in the coming decades

• Drug trials have been largely unsuccessful
• Potentially because interventions occur too late in disease progression
• Effective widespread early detection could assist clinical trials

• Current gold-standard indicators of AD (mostly neuroimaging-based biomarkers) are invasive and 
expensive

• Not practical for population-wide screening

• Cognitive tests / digital metrics can be obtained readily and cheaply 
• But may not be as predictive

Can we combine longitudinal biomarker and cognitive data to cluster trajectories in a 
clinically meaningful way?



Why unsupervised?

• Misdiagnosis is common
• Clinical labels are not 100% accurate
• Common comorbidities, such as geriatric depression and stroke, also cause memory problems
• Some clinicians view ‘Mild Cognitive Impairment’ (MCI) with skepticism

• Emphasis on earlier diagnosis
• Changes in the brain begin years before symptoms
• We want to be making predictions before labels are available

• Possible to discover subtypes and different patterns of disease progression
• The disease may progress differently for different people



A model-based approach

• We learn a mixture of state space models on the trajectory data: 
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Cluster #1

Cluster #2

Cluster #3

Neuroimaging / biomarker data
expensive & invasive

Cognitive assessment data
readily collectible at scale
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1. Cluster selection
(using mixture)

2. Cluster-dependent dynamics
(using state space models)

-> progression of time ->



Model specification

We specify a parameterized, 
generative distribution on the 
sequences of biomarkers and 
cognitive assessments
• start with linear Gaussian 

dynamics 
• same model underlying 

mixture Kalman filters
• analytic marginalization 

for missing / hidden data

• training done using EM with 
hard assignment 

• makes moving to 
nonlinear specifications 
very straightforward
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In the most standard instantiation, both the state and measurement models are
taken to be linear and Gaussian:
(2) p(x1:T ; z1:T ) = ⌘d(z1;m,S)

Q
T

t=2 ⌘d(zt; zt�1A,�)
Q

T

t=1 ⌘`(xt; ztH,⇤)

for zt 2 Rd and xt 2 R`. Here, ⌘d(·;m,S) denotes the d-dimensional Gaussian
distribution with mean m and covariance S. Kálmán used the model (2) to develop
his eponymous filtering framework [Kal60; KB61] and many nonlinear extensions to
it have been considered over the subsequent years.

3.3. Mixtures of state space models. Mixtures of state space models adopt the
mixture modelling framework introduced in section 3.1 with each mixture component
taking the form of a state space model as described in section 3.2. For now, we
restrict to linear, Gaussian trajectories. Under these assumptions, the joint density
of the hidden and observed variables can be written as

p(x1:T ; z1:T ) =
P

nc

c=1 ⇡cp(x1:T ; z1:T |c)
(3)

=
P

nc

c=1 ⇡c⌘d(z1;mc, Sc)
Q

T

t=2 ⌘d(zt; zt�1Ac,�c)
Q

T

t=1 ⌘`(xt; ztHc,⇤c)

where p(c) = ⇡c denotes a categorical distribution on {1, . . . , nc} so that
P

nc

c=1 ⇡c = 1
where ⇡c � 0 for all c, and each mixture component p(x1:T ; z1:T |c) has its own
trainable parameters. Figure 1 depicts a graphical representation of this model.
Mixtures of this form have previously been studied for filtering purposes by Chen
and Liu [CL00].
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Figure 1. As depicted in plate notation [see, e.g., Mur12, §10.4.1],
the proposed model consists of nc copies of a latent state space
model.

4. Training Methodology

In this section, we describe how to learn and interpret model parameters using
training data.

4.1. Training with Expectation–Maximization (EM). Given data

D = {(x(i)
1:T , z

(i)
1:T )}1ind

consisting of i.i.d. samples from (3), we wish to estimate both cluster membership
c
(i) for each instance and the parameters governing within-cluster dynamics, namely
Ac,�c, Hc, and ⇤c, for each cluster 1  c  nc. For problems of this type, the most
common approach involves iterating between using estimated parameters to infer
cluster membership and then using estimated cluster membership to infer parameters.
This process is known as expectation–maximization [EM: DLR77] and enjoys certain

odds of being assigned to cluster c

class-conditional variable distribution

initial distribution of variables | c

state transition model | c

relationship between states and 

measurements | c



Results on ADNI research data



ADNI data description

We created trajectories at regular 2-year 
intervals using ADNI data:
• Biomarkers

• Grey matter score
• Amyloid burden

• Cognitive scores
• ADNI-Mem
• ADNI-EF
• ADAS-13
• MoCA

• We also collect MMSE to profile clusters

• After quality control, this gives us trajectories:

where clinical labels correspond to the final 
observation in each trajectory:
• CN = cognitively normal
• sMCI = stable Mild Cognitive Impairment
• pMCI = progressive MCI
• AD = Alzheimer’s disease

trajectory CN sMCI pMCI AD total
length 2 142 122 13 60 337
length 3 72 93 6 23 194
length 4 20 9 0 11 40
total 234 224 19 94 571

* pMCI = MCI now + AD diagnosis within 3 years



3- & 4-cluster plots coloured by cluster

• predictions using 10-fold cross-validation

healthy

unwell

healthy

unwell

47%
36%
17%

28%
30%
28%
14%



Predicting without access to latent states

We can mask 
• amyloid score, or 
• both amyloid and gray matter

when making predicting model 
predictions

3 cluster model
• 93% of labels are maintained 

when missing amyloid alone
• 75% of labels maintained 

when missing both amyloid 
and gray matter 

• of those that do switch, all 
switch by only one level (i.e. 
A->B and not A->C)

4 cluster model
• 76% of labels maintained 

when missing amyloid alone
• 58% of labels maintained 

when missing both
• of those that do switch, 74% 

move only one level

A B C
A 225 44 0
B 64 138 4
C 0 30 66

no amyloid/GM
or

ig
in

al
A B C D

A 103 38 18 0
B 50 84 33 2
C 38 40 78 5
D 0 6 12 64or

ig
in

al

no amyloid/GM



Predicting without access to history

The model requires trajectory 
data for training
• however, once trained, we 

can predict cluster 
membership using snapshot 
measurements

3 cluster model
• 91% of labels are maintained 

when history is masked

4 cluster model
• 85% of labels maintained 

when history is masked

A B C D
A 141 11 7 0
B 15 138 14 2
C 7 7 129 18
D 1 2 3 76or

ig
in

al

final snapshot
A B C

A 257 11 1
B 12 175 19
C 1 6 89

final snapshot

or
ig
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Profiling clusters by MMSE

The Mini-Mental State Exam 
(MMSE) is a 30-point test for 
detecting MCI
• not as sensitive as some of 

the other cognitive metrics
• very widely used in the 

clinical community
• held-out from the model

3 cluster model
• mean +/- std err.
• for time steps 3 & 4, taken 

over trajectories having 3rd

and 4th observation

4 cluster model



Summary comparison of average outcomes versus labels
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cluster diagnosis train test test (s.) test (n.h.) train test
CN 59% 58% 58% 63% 41% 47%
sMCI 40% 40% 40% 36% 40% 34%
pMCI 0% 1% 1% 0% 4% 3%
AD 1% 1% 1% 1% 15% 17%
CN 35% 36% 38% 24% 42% 38%
sMCI 47% 48% 49% 54% 39% 41%
pMCI 6% 5% 4% 6% 3% 5%
AD 12% 11% 9% 16% 16% 16%
CN 4% 3% 4% 1% 40% 36%
sMCI 19% 19% 20% 9% 38% 45%
pMCI 5% 7% 9% 7% 3% 3%
AD 72% 71% 67% 83% 18% 16%

ours sustain

A

B

C

cluster diagnosis train test test (s.) test (n.h.) train test
CN 64% 65% 63% 65% 48% 45%
sMCI 36% 33% 36% 35% 39% 40%
pMCI 0% 1% 1% 1% 4% 5%
AD 0% 1% 1% 0% 9% 10%
CN 46% 46% 48% 46% 46% 48%
sMCI 47% 47% 46% 47% 37% 36%
pMCI 3% 2% 2% 3% 4% 3%
AD 4% 5% 5% 4% 13% 13%
CN 32% 31% 34% 23% 40% 42%
sMCI 46% 48% 48% 51% 40% 40%
pMCI 7% 8% 7% 6% 2% 2%
AD 16% 13% 11% 21% 18% 16%
CN 3% 2% 4% 0% 21% 13%
sMCI 16% 17% 21% 10% 43% 46%
pMCI 4% 4% 4% 7% 4% 6%
AD 77% 77% 71% 83% 32% 36%

D

ours sustain

A

B

C

s. = test on snapshots
n.h. = test w/o hidden variables

SuStaIn is another unsupervised method for clustering trajectories 



NUS clinical data



Data description

• Transferring models to different populations 
(esp. from research to clinical cohorts) 
remains a challenging problem in the AD 
space

• We applied our model trained on ADNI to 
clinical data from NUS in Singapore

• 185 observations of
• GM score
• amyloid burden
• MoCA score

• Missing: ADNI-Mem, ADNI-EF, ADAS-13
• We have MMSE for profiling
• Diagnostic outcomes as follows:

diagnosis rate
normal 16%
CIND mild 30%
CIND moderate 24%
vascular dementia 11%
AD 20%



3 clusters

• Very similar breakdowns by clinical outcome for an entirely new cohort

cluster NCI CIND-mild CIND-moderate VAD AD
A 32% 46% 17% 3% 3%
B 7% 41% 33% 11% 7%
C 7% 16% 26% 16% 35%

cluster avg. MMSE
A 26.2
B 23.8
C 19.1

*** highly significant

36%
15%
50%



4 clusters

• Similar story with 4 clusters

cluster NCI CIND-mild CIND-moderate VAD AD
A 31% 48% 17% 4% 0%
B 25% 50% 17% 0% 8%
C 17% 43% 30% 7% 3%
D 6% 15% 26% 17% 36%

cluster avg. MMSE
A 26.7
B 24.1
C 24.4
D 19.3

*** highly significant

26%
7%
16%
51%



Next steps



Moving forward

• We’ve been experimenting with nonlinear / non-gaussian models for the trajectory components
• No biological reason to assume that the relationship between cognitive assessments and underlying 

biomarker levels is linear

• We’ve been gathering larger datasets that will allow us to increase model complexity / the number 
of clusters considered

• We’re also gathering datasets of currently healthy people for earlier profiling

• We plan to develop more informative digital features that can be collected readily and 
inexpensively at scale

• From Fitbits, EEG headbands, smartphone apps
• As part of the EDoN Initiative (https://edon-initiative.org)

https://edon-initiative.org/


Thanks!
From all of us at the 
Adaptive Brain Lab
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