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Motivation & approach




Motivation

« Alzheimer’s disease (AD) is the most common cause of dementia
» Age correlates strongly with disease
* Prevalence expected to increase in the coming decades

« Drug trials have been largely unsuccessful
« Potentially because interventions occur too late in disease progression
« Effective widespread early detection could assist clinical trials
« Current gold-standard indicators of AD (mostly neuroimaging-based biomarkers) are invasive and
expensive
» Not practical for population-wide screening

« Cognitive tests / digital metrics can be obtained readily and cheaply
« But may not be as predictive

Can we combine longitudinal biomarker and cognitive data to cluster trajectories in a
clinically meaningful way?



Why unsupervised?

* Misdiagnosis is common
» Clinical labels are not 100% accurate
« Common comorbidities, such as geriatric depression and stroke, also cause memory problems
« Some clinicians view ‘Mild Cognitive Impairment’ (MCI) with skepticism

 Emphasis on earlier diagnosis
« Changes in the brain begin years before symptoms
+ We want to be making predictions before labels are available

« Possible to discover subtypes and different patterns of disease progression
« The disease may progress differently for different people



A model-based approach

« We learn a mixture of state space models on the trajectory data:
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Model specification

We specify a parameterized,
generative distribution on the
sequences of biomarkers and
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Results on ADNI research data




ADNI data description

We created trajectories at regular 2-year » After quality control, this gives us trajectories:
intervals using ADNI data:
. - trajectory CN sMCI pMCI AD total
Biomarkers length2 142 122 13 60 337
* Grey matter score length 3 72 93 6 23 194
* Amyloid burden length 4 20 9 0 11 40
" total 234 224 19 94 571,
« Cognitive scores
« ADNI-Mem
. ADNI-EF where clinical labels correspond to the final
) observation in each trajectory:
* ADAS-13  CN = cognitively normal
« MoCA

« sMCI = stable Mild Cognitive Impairment
« We also collect MMSE to profile clusters « pMCI = progressive MCI

« AD = Alzheimer’s disease

* pMCI = MCI now + AD diagnosis within 3 years



3- & 4-cluster plots coloured by cluster

« predictions using 10-fold cross-validation
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Predicting without access to latent states

We can mask 3 cluster model 4 cluster model
. i * 93% of labels are maintained « 76% of labels maintained
amyloid score, or when missing amyloid alone when missing amyloid alone
* both amyloid and gray matter e 75% of labels maintained * 58% of labels maintained
when making predicting model when missing both amyloid when missing both
predictions and gray matter « of those that do switch, 74%
« of those that do switch, all move only one level

switch by only one level (i.e.
A->B and not A->C)

no amyloid/GM no amyloid/GM
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Predicting without access to history

The model requires trajectory 3 cluster model 4 cluster model
data for training * 91% of labels are maintained * 85% of labels maintained
* however, once trained, we when history is masked when history is masked

can predict cluster
membership using snapshot

measurements
final snapshot final snapshot
A B C A B CD
T A 257 11 @ A 141,11 7.90
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Profiling clusters by MMSE

The Mini-Mental State Exam 3 cluster model
(MMSI_E) is a 30-point test for « mean +/- std err.
detecting MCI « for time steps 3 & 4, taken
* not as sensitive as some of over frajectories having 3
the other cognitive metrics and 4™ observation
* very widely used in the
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Summary comparison of average outcomes versus labels

ours sustain ours sustain
cluster diagnosis |train test test (s.) test (n.h.)|train test cluster diagnosis |train test test (s.) test (n.h.)|train test
CN 59% 58% 58% 63%| 41% 47% CN 64% 65% 63% 65%| 48% 45%
A sMCI 40% 40% 40% 36%| 40% 34% A sMCI 36% 33% 36% 35%| 39% 40% ¥
pMCI 0% 1% 1% 0%| 4% 3% pMCI 0% 1% 1% 1%| 4% 5% ~
AD 1% 1% 1% 1%| 15% 17% AD 0% 1% 1% 0%| 9% 10% %
CN 35% 36% 38% 24%| 42% 38% CN 46% 46% 48% 46%| 46% 48% _GCJ
B sMCI 47% 48% 49% 54%| 39% 41% B sMCI 47% 47% 46% 47%| 37% 36% o
pMCI 6% 5% 4% 6%| 3% 5% pMCI 3% 2% 2% 3%| 4% 3% £
AD 12% 11% 9% 16%| 16% 16% AD 4% 5% 5% 4%)| 13% 13% .=
CN 4% 3% 4% 1%| 40% 36% CN 32% 31% 34% 23%| 40% 42% 8
C sMCI 19% 19% 20% 9%| 38% 45% c sMCI 46% 48% 48% 51%| 40% 40% -\?
pMCI 5% 7% 9% 7%| 3% 3% pMCI 7% 8% 7% 6%| 2% 2% v
AD 72% 71% 67% 83%)| 18% 16% AD 16% 13% 11% 21%| 18% 16% Vv
CN 3% 2% 4% 0%| 21% 13%
D sMCI 16% 17% 21% 10%| 43% 46%
s. = test on snapshots pMCI 4% 4% 4% %| 4% 6%
n.h. = test w/o hidden variables AD 77% 77% 71% 83%!| 32% 36%

SuStaln is another unsupervised method for clustering trajectories



NUS clinical data




Data description

« Transferring models to different populations 185 observations of

(esp. from research to clinical cohorts) « GM score
remains a challenging problem in the AD - amyloid burden
Space «  MoCA score

« We applled our model trained on ADNI to . Missing. ADNI-Mem. ADNI-EF. ADAS-13
clinical data from NUS in Singapore ' ’ ’
We have MMSE for profiling

» Diagnostic outcomes as follows:

diagnosis rate
normal 16%
CIND mild 30%
CIND moderate 24%
vascular dementia 11%

AD 20%,




* Very similar breakdowns by clinical outcome for an entirely new cohort

cluster NCI CIND-mild CIND-moderate VAD AD
A 32% 46% 17% 3% 3%
B 7% 41% 33% 11% 7%
C 7% 16% 26% 16% 35%,
cluster avg. MMSE
A 26.2 I
B 23.8 I *** highly significant
C 19.1
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« Similar story with 4 clusters

cluster NCI CIND-mild CIND-moderate VAD AD
A 31% 48% 17% 4% 0%
B 25% 50% 17% 0% 8%
C 17% 43% 30% 7% 3%
D 6% 15% 26% 17% 36%,
cluster avg. MMSE

A 26.7 I

B 24 .1 [ *** highly significant

C 24 4 I [

D 19.3
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Moving forward

« We've been experimenting with nonlinear / non-gaussian models for the trajectory components

* No biological reason to assume that the relationship between cognitive assessments and underlying
biomarker levels is linear

« We’ve been gathering larger datasets that will allow us to increase model complexity / the number
of clusters considered

« We’re also gathering datasets of currently healthy people for earlier profiling

« We plan to develop more informative digital features that can be collected readily and
inexpensively at scale

* From Fitbits, EEG headbands, smartphone apps
* As part of the EDoN Initiative (https://edon-initiative.orq)



https://edon-initiative.org/

Thanks!

From all of us at the
Adaptive Brain Lab
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