

Clustering Trajectories of Neurodegenerative Disease

With Mixtures of State Space Models

Michael C. Burkhart (speaking) | Liz Y. Lee | Peter Tino | Zoe Kourtzi

Trustworthy AI for Medical and Health Research Workshop | Maxwell Centre, Cavendish Lab, Cambridge | 23 November 2022

Outline

- Methods
 - Background & motivation
 - Our approach
- Results
 - Application to a research cohort
 - Transferring trained models from a research to a clinical setting
- Conclusions and future work

Motivation & approach

Motivation

- Alzheimer's disease (AD) is the most common cause of dementia
 - Age correlates strongly with disease
 - Prevalence expected to increase in the coming decades
- Drug trials have been largely unsuccessful
 - Potentially because interventions occur too late in disease progression
 - Effective widespread early detection could assist clinical trials
- Current gold-standard indicators of AD (mostly neuroimaging-based biomarkers) are invasive and expensive
 - Not practical for population-wide screening
- Cognitive tests / digital metrics can be obtained readily and cheaply
 - But may not be as predictive

Can we combine longitudinal biomarker and cognitive data to cluster trajectories in a clinically meaningful way?

Why unsupervised?

- Misdiagnosis is common
 - Clinical labels are not 100% accurate
 - Common comorbidities, such as geriatric depression and stroke, also cause memory problems
 - Some clinicians view 'Mild Cognitive Impairment' (MCI) with skepticism
- Emphasis on earlier diagnosis
 - Changes in the brain begin years before symptoms
 - We want to be making predictions before labels are available
- Possible to discover subtypes and different patterns of disease progression
 - The disease may progress differently for different people

A model-based approach

• We learn a mixture of state space models on the trajectory data:

Model specification

We specify a parameterized, generative distribution on the sequences of biomarkers and cognitive assessments

- start with linear Gaussian dynamics
 - same model underlying mixture Kalman filters
 - analytic marginalization for missing / hidden data
- training done using EM with hard assignment
 - makes moving to nonlinear specifications very straightforward

Results on ADNI research data

ADNI data description

We created trajectories at regular 2-year intervals using ADNI data:

- Biomarkers
 - Grey matter score
 - Amyloid burden
- Cognitive scores
 - ADNI-Mem
 - ADNI-EF
 - ADAS-13
 - MoCA
- We also collect MMSE to profile clusters

• After quality control, this gives us trajectories:

trajectory	CN	sMCI	pMCI	AD	total
length 2	142	122	13	60	337
length 3	72	93	6	23	194
length 4	20	9	0	11	40
total	234	224	19	94	571

where clinical labels correspond to the final observation in each trajectory:

- CN = cognitively normal
- sMCI = stable Mild Cognitive Impairment
- pMCI = progressive MCI
- AD = Alzheimer's disease

3- & 4-cluster plots coloured by cluster

• predictions using 10-fold cross-validation

Predicting without access to latent states

We can mask

- amyloid score, or
- both amyloid and gray matter
- when making predicting model predictions

3 cluster model

- 93% of labels are maintained when missing amyloid alone
- 75% of labels maintained when missing both amyloid and gray matter
- of those that do switch, all switch by only one level (i.e. A->B and not A->C)

		no amyloid/GM						
		A B C						
lal	Α	225	44	0				
igir	В	64	138	4				
OLI	С	0	30	66				

4 cluster model

- 76% of labels maintained when missing amyloid alone
- 58% of labels maintained when missing both
- of those that do switch, 74% move only one level

Predicting without access to history

The model requires trajectory data for training

 however, once trained, we can predict cluster membership using snapshot measurements 3 cluster model

 91% of labels are maintained when history is masked

4 cluster model

 85% of labels maintained when history is masked

Profiling clusters by MMSE

The Mini-Mental State Exam (MMSE) is a 30-point test for detecting MCI

- not as sensitive as some of the other cognitive metrics
- very widely used in the clinical community
- held-out from the model

3 cluster model

- mean +/- std err.
- for time steps 3 & 4, taken over trajectories having 3rd and 4th observation

4 cluster model

				ours		sustain						ours		sus	tain
cluster	diagnosis	train	test	test (s.)	test (n.h.)	train	test	cluster	diagnosis	train	test	test (s.)	test (n.h.)	train	test
	CN	59%	58%	58%	63%	41%	47%		CN	64%	65%	63%	65%	48%	45%
^	sMCI	40%	40%	40%	36%	40%	34%	٨	sMCI	36%	33%	36%	35%	39%	40%
A	pMCI	0%	1%	1%	0%	4%	3%	A	pMCI	0%	1%	1%	1%	4%	5%
	AD	1%	1%	1%	1%	15%	17%		AD	0%	1%	1%	0%	9%	10%
	CN	35%	36%	38%	24%	42%	38%		CN	46%	46%	48%	46%	46%	48%
B	sMCI	47%	48%	49%	54%	39%	41%	B	sMCI	47%	47%	46%	47%	37%	36%
D	pMCI	6%	5%	4%	6%	3%	5%	D	pMCI	3%	2%	2%	3%	4%	3%
	AD	12%	11%	9%	16%	16%	16%		AD	4%	5%	5%	4%	13%	13%
	CN	4%	3%	4%	1%	40%	36%		CN	32%	31%	34%	23%	40%	42%
C	sMCI	19%	19%	20%	9%	38%	45%	C	sMCI	46%	48%	48%	51%	40%	40%
C	pMCI	5%	7%	9%	7%	3%	3%	C	pMCI	7%	8%	7%	6%	2%	2%
	AD	72%	71%	67%	83%	18%	16%		AD	16%	13%	11%	21%	18%	16%
									CN	3%	2%	4%	0%	21%	13%
			sMCI	16%	17%	21%	10%	43%	46%						
s. = tes	s. = test on snapshots			pMCI	4%	4%	4%	7%	4%	6%					
n.h. = te	est w/o hidde	en vari	ables						AD	77%	77%	71%	83%	32%	36%

SuStaln is another unsupervised method for clustering trajectories

NUS clinical data

Data description

- Transferring models to different populations (esp. from research to clinical cohorts) remains a challenging problem in the AD space
- We applied our model trained on ADNI to clinical data from NUS in Singapore

- 185 observations of
 - GM score
 - amyloid burden
 - MoCA score
- Missing: ADNI-Mem, ADNI-EF, ADAS-13
- We have MMSE for profiling
- Diagnostic outcomes as follows:

diagnosis	rate
normal	16%
CIND mild	30%
CIND moderate	24%
vascular dementia	11%
AD	20%

3 clusters

• Very similar breakdowns by clinical outcome for an entirely new cohort

cluster	NCI	CIND-mild	CIND-moderate	VAD	AD
А	32%	46%	17%	3%	3%
В	7%	41%	33%	11%	7%
С	7%	16%	26%	16%	35%

		avg. MMSE	cluster
•	• •	26.2	А
*** highly significan	• •	23.8	В
1	• •	19.1	С

4 clusters

• Similar story with 4 clusters

cluster	NCI	CIND-mild	CIND-moderate	VAD	AD
А	31%	48%	17%	4%	0%
В	25%	50%	17%	0%	8%
С	17%	43%	30%	7%	3%
D	6%	15%	26%	17%	36%

*** highly significant

Next steps

Moving forward

- We've been experimenting with nonlinear / non-gaussian models for the trajectory components
 - No biological reason to assume that the relationship between cognitive assessments and underlying biomarker levels is linear
- We've been gathering larger datasets that will allow us to increase model complexity / the number of clusters considered
 - We're also gathering datasets of currently healthy people for earlier profiling
- We plan to develop more informative digital features that can be collected readily and inexpensively at scale
 - From Fitbits, EEG headbands, smartphone apps
 - As part of the EDoN Initiative (<u>https://edon-initiative.org</u>)

Thanks!

From all of us at the Adaptive Brain Lab

References

Alzheimer's

- NHS. 'Overview: Alzheimer's disease.' <u>https://www.nhs.uk/conditions/alzheimers-disease/</u>; retrieved 2022-Nov.
- ARUK. 'The Right to Know: Accurate and Earlier Diagnosis of Dementia.' <u>https://www.alzheimersresearchuk.org/wp-content/uploads/2021/05/ARUK-The-Right-to-Know_Accurate-and-Earlier-Diagnosis-of-Dementia_25May21.pdf</u>; retrieved 2022-Nov.
- Borchert, et al. (2021), 'Artificial intelligence for diagnosis and prognosis in neuroimaging for dementia; a systematic review', <u>medRxiv 2021.12.12.21267677</u>

Data

- ADNI. 'About ADNI'. <u>https://adni.loni.usc.edu/about/;</u> retrieved 2022-Nov.
- NUS. 'Memory Ageing and Cognition Centre'. <u>http://www.macc.sg/About-Memory-Aging-and-Cognition-Centre-Dementia-Singapore</u>; retrieved 2022-Nov.

References II

SuStaln model

- Young, A. L., R. V. Marinescu, N. P. Oxtoby et al. (2018), 'Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference', *Nat. Commun.* 9, 1.
- Archetti, D., A. L. Young, N. P. Oxtoby et al. (2021), 'Inter-Cohort Validation of SuStaIn Model for Alzheimer's Disease', *Front. Big Data.*
- Vogel, J. W., A. L. Young, N. P. Oxtoby et al. (2021), 'Four distinct trajectories of tau deposition identified in Alzheimer's disease', *Nat. Med.* 27, no. 5, pp. 871–881.

Mixtures of linear Gaussian state-space models [with variational inference]:

- S. Chiappa and D. Barber. Dirichlet Mixtures of Bayesian Linear Gaussian State-Space Models: a Variational Approach. Tech. rep. 161. Max Planck Institute for Biological Cybernetics, 2007.
- S. Chiappa and D. Barber. 'Bayesian Factorial Linear Gaussian State-Space Models for Biosignal Decomposition', *IEEE Signal Process. Lett.* 14, no. 4 (2007), pp. 267–270.

Mixture Kalman Filters

• R. Chen and J. S. Liu. 'Mixture Kalman Filters'. J. Roy. Stat. Soc. Ser. B. 62, no. 3, 493–508.