Menu

Home / C2D3 Computational Biology

C2D3 Computational Biology

C2D3 Computational Biology logo

We are living in a very exciting time for biology: whole-genome sequencing has opened up the field of genome-scale biology and with this a trend to larger-scale experiments, whether based on DNA sequencing or other technologies such as microscopy.  However it is also a time of great opportunity for small-scale biology as there is a new wealth of data to build from: one can turn to a computer to ask questions that previously might have taken months to answer in the laboratory. One of the great challenges for the field is analysing the large amounts of complex data generated, and synthesising them into useful systems-wide models of biological processes. Whether operating on a large or small scale the use of mathematical and computational methods is becoming an integral part of biological research.

There remains a world-wide shortage of skilled computational biologists. An important part of C2D3 Computational Biology is an MPhil course based at the Centre for Mathematical Sciences. The 11-month course introduces students to bioinformatics and other quantitative aspects of modern biology and medicine. It is intended especially for those whose first degree is in mathematics and computer science and others wishing to learn about the subject in preparation for a PhD course or a career in industry. Complementing the MPhil course is the Wellcome Trust PhD programme in Mathematical Genomics and Medicine.  Run jointly with the Wellcome Trust Sanger Institute this programme provides opportunities for collaborative research across the Cambridge region at the exciting interfaces between mathematics, genomics and medicine.

History and financial support 

C2D3 Computational Biology came about by the merger of the Cambridge Computational Biology Institute (CCBI) into C2D3 in 2021. The CCBI was established in 2003 to promote computational biology, interpreted broadly, within the University and in the region. It established (2004) the MPhil in Computational Biology programme, founded (2011) the Wellcome Trust Mathematical Genomics and Medicine 4-year PhD programme, and, among other activities, started a popular computational biology annual symposium. The CCBI was involved in setting up and helping to run the Cambridge Big Data (CBD) Strategic Research Initiative out of which the C2D3 Interdisciplinary Research Centre was formed. Similarly the CCBI was part of the group that helped set up the Alan Turing Institute.  

The CCBI received financial support equally from the four science schools of the University: 

  • The School of the Biological Sciences      
  • The School of Clinical Medicine      
  • The School of the Physical Sciences (via DAMTP, Physics, Chemistry)      
  • The School of Technology (via Engineering, Computer Science) 

Space was kindly provided by the Department of Applied Mathematics and Theoretical Physics, within the Centre for Mathematical Sciences. 

MPhil in Computational Biology  

The Cambridge-MIT Institute provided funds to establish the MPhil in Computational Biology and subsequently studentships have been provided by: 

  • Biotechnology and Biological Sciences Research Council      
  • Cancer Research UK      
  • Engineering and Physical Sciences Research Council      
  • Medical Research Council      
  • Microsoft Research 

MGM PhD Programme 

The PhD programme in Mathematical Genomics and Medicine is funded by the Wellcome Trust.

Mailing list

To sign-up to the mailing list, with option to join the C2D3 main mailing list, please complete the appropriate form here.

Talks

Combining multi-omics and biological knowledge to extract disease mechanisms

Monday, 11 July 2022, 3.00pm to 4.00pm
Speaker: Julio Saez-Rodriquez, Faculty of Medicine of Heidelberg University, Director of the Institute of Computational Biomedicine and Group Leader at the EMBL- Heidelberg University Molecular Medicine Partnership Unit (MMPU)
Venue: CRUK CI Lecture Theatre

Multi-omics technologies, and in particular those with single-cell and spatial resolution, provide unique opportunities to study deregulation of intra- and inter-cellular processes in cancer and other diseases. In this talk I will present recent methods and applications from our group towards this aim, with a focus is on computational approaches that combine data with biological knowledge within statistical and machine learning methods. This combination allows us to increase both the statistical power of our approaches and the mechanistic interpretability of the results. I will also discuss the value to perform perturbation studies, combined with mathematical modeling, to increase our understanding and therapeutic opportunities. Finally, I will show how, using novel microfluidics-based technologies, this approach can also be applied directly to biopsies, allowing to build mechanistic models for individual cancer patients, and use these models to propose new therapies.

Title to be confirmed

Monday, 26 September 2022, 3.00pm to 4.00pm
Speaker: Christopher Yau, University of Manchester
Venue: CRUK CI Lecture Theatre

Abstract not available

Title to be confirmed

Monday, 28 November 2022, 2.00pm to 3.00pm
Speaker: Kamila Naxerova, PhD, Dana-Farber/Harvard Cancer Centre
Venue: Zoom

Abstract not available

About us

The Cambridge Centre for Data-Driven Discovery (C2D3) brings together researchers and expertise from across the academic departments and industry to drive research into the analysis, understanding and use of data science and AI. C2D3 is an Interdisciplinary Research Centre at the University of Cambridge.

  • Supports and connects the growing data science and AI research community 
  • Builds research capacity in data science and AI to tackle complex issues 
  • Drives new research challenges through collaborative research projects 
  • Promotes and provides opportunities for knowledge transfer 
  • Identifies and provides training courses for students, academics, industry and the third sector 
  • Acts as a gateway for external organisations 

Join us.